The human brain representation of odor identification.
نویسندگان
چکیده
Odor identification (OI) tests are increasingly used clinically as biomarkers for Alzheimer's disease and schizophrenia. The aim of this study was to directly compare the neuronal correlates to identified odors vs. nonidentified odors. Seventeen females with normal olfactory function underwent a functional magnetic resonance imaging (fMRI) experiment with postscanning assessment of spontaneous uncued OI. An event-related analysis was performed to compare within-subject activity to spontaneously identified vs. nonidentified odors at the whole brain level, and in anatomic and functional regions of interest (ROIs) in the medial temporal lobe (MTL). Parameter estimate values and blood oxygenated level-dependent (BOLD) signal curves for correctly identified and nonidentified odors were derived from functional ROIs in hippocampus, entorhinal, piriform, and orbitofrontal cortices. Number of activated voxels and max parameter estimate values were obtained from anatomic ROIs in the hippocampus and the entorhinal cortex. At the whole brain level the correct OI gave rise to increased activity in the left entorhinal cortex and secondary olfactory structures, including the orbitofrontal cortex. Increased activation was also observed in fusiform, primary visual, and auditory cortices, inferior frontal plus inferior temporal gyri. The anatomic MTL ROI analysis showed increased activation in the left entorhinal cortex, right hippocampus, and posterior parahippocampal gyri in correct OI. In the entorhinal cortex and hippocampus the BOLD signal increased specifically in response to identified odors and decreased for nonidentified odors. In orbitofrontal and piriform cortices both identified and nonidentified odors gave rise to an increased BOLD signal, but the response to identified odors was significantly greater than that for nonidentified odors. These results support a specific role for entorhinal cortex and hippocampus in OI, whereas piriform and orbitofrontal cortices are active in both smelling and OI. Moreover, episodic as well as semantic memory systems appeared to support OI.
منابع مشابه
Neuronal basis of tactile sense in the rat whisker system
Using their whiskers, rats have tactile capacities rivaling those of the human with our fingertips. We have carried out experiments to explore how neurons encode touch signals to build up a central representation. Touch signals begin with the receptors in the follicle of each whisker and can be traced to a columnar module in somatosensory cortex that is connected with the same whisker: the well...
متن کاملNeuronal basis of tactile sense in the rat whisker system
Using their whiskers, rats have tactile capacities rivaling those of the human with our fingertips. We have carried out experiments to explore how neurons encode touch signals to build up a central representation. Touch signals begin with the receptors in the follicle of each whisker and can be traced to a columnar module in somatosensory cortex that is connected with the same whisker: the well...
متن کاملThe Privileged Brain Representation of First Olfactory Associations
Authors, poets, and scientists have been fascinated by the strength of childhood olfactory memories. Indeed, in long-term memory, the first odor-to-object association was stronger than subsequent associations of the same odor with other objects. Here we tested the hypothesis that first odor associations enjoy a privileged brain representation. Because emotion impacts memory, we further asked wh...
متن کاملParallel Representation of Stimulus Identity and Intensity in a Dual Pathway Model Inspired by the Olfactory System of the Honeybee
The honeybee Apis mellifera has a remarkable ability to detect and locate food sources during foraging, and to associate odor cues with food rewards. In the honeybee's olfactory system, sensory input is first processed in the antennal lobe (AL) network. Uniglomerular projection neurons (PNs) convey the sensory code from the AL to higher brain regions via two parallel but anatomically distinct p...
متن کاملOlfactory Object Recognition and Generalization in the Insect Brain
Sensory object recognition is the most fundamental of operations performed by the brain. A key computational difficulty of object recognition is that it requires both selectivity to particular objects (e.g., exact odor mixture identification) and generalization across objects (identifying particular features or components common to different odors). Although previous results (1) suggest that od...
متن کاملAntennal lobe processing increases separability of odor mixture representations in the honeybee.
Local networks within the primary olfactory centers reformat odor representations from olfactory receptor neurons to second-order neurons. By studying the rules underlying mixture representation at the input to the antennal lobe (AL), the primary olfactory center of the insect brain, we recently found that mixture representation follows a strict elemental rule in honeybees: the more a component...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 108 2 شماره
صفحات -
تاریخ انتشار 2012